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The results of space-like separated measurements are independent of distant measurement settings,
a property one might call two-way no-signalling. In contrast, time-like separated measurements are
only one-way no-signalling since the past is independent of the future but not vice-versa. For this
reason some temporal correlations that are formally identical to non-classical spatial correlations
can still be modelled classically. We propose a new formulation of Bell’s theorem for temporal
correlations, namely we define non-classical temporal correlations as the ones which cannot be
simulated by propagating in time the classical information content of a quantum system given by
the Holevo bound. We first show that temporal correlations between results of any projective
quantum measurements on a qubit can be simulated classically. Then we present a sequence of
POVM measurements on a single m-level quantum system that cannot be explained by propagating
in time an m-level classical system and using classical computers with unlimited memory.

Introduction. The violation of a Bell inequality [1–3]
demonstrates that the outcomes of an experiment have
contradicted a set of well defined classical intuitions.
Quantum mechanics allows correlations between space-
like separated parties that have no explanation in terms
of a hidden variable model, i.e. they cannot be repro-
duced with the help of classical computers running pre-
agreed algorithms. However, when correlations are gen-
erated in a temporal scenario, by a sequence of time-like
separated measurements, it is more difficult to demon-
strate their non-classical nature. The causal structure
of physics implies only one-way no-signalling, namely
the impossibility of sending communication backwards
in time. The only bound on forward signalling is the
information capacity of the physical system.

Here we analyse a single quantum system measured at
n points in time and consider to what extent one can
prove that the temporal correlations between these mea-
surement outcomes could not be generated by a classical
system. We assume an idealization, in which the m-level
physical system carries no hidden degrees of freedom. In
this case the classical information capacity of the system
is log2m; known as the Holevo bound [4].

The previous approach to demonstrate non-classicality
of temporal quantum correlations are so called “temporal
Bell inequalities” [5–14]. One of the problems with this
approach, stated in [13], is that the classical assumptions
behind the temporal inequalities, which are realism and
non-invasiveness, were originally chosen to test the quan-
tumness of a temporal evolution of macroscopic quantum
systems [5]. As such, they do not provide a convincing
test of quantumness in the case of a single evolving sys-
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tem. Moreover the operational meaning of the assump-
tions themselves is still a subject of debate [7, 11, 15].

The fact that in the sequential scenario the evolving
system caries information has significant consequences
[10]. Let us first consider the simplest possible case: a
single two-level system which undergoes a sequence of
two black-box operations at time instances t1 and t2.
Each black box has an input describing which settings
are chosen and an output describing the measurement
result. For a quantum implementation in which black
boxes perform projective measurements the inputs have
the form of unit vectors ~a(t1) and ~a(t2), and outputs
read α(t1) = ±1 and α(t2) = ±1, respectively. It can
be verified [6], that the temporal correlation function
〈α(t1)α(t2)〉 equals ~a(t1) · ~a(t2). This is (up to the sign)
the correlation function that would be generated by two
separated parties that share the singlet state. Moreover,
it leads to a maximal violation of the temporal CHSH
inequality [6]. Can we conclude from these two facts
that our system gives rise to non-classical temporal cor-
relations? The answer is negative — instead of a sin-
gle qubit one can communicate one classical bit which
together with black boxes equipped with classically cor-
related real vectors ~λ implement the Toner-Bacon 1-bit
protocol for simulating the singlet state [16][17]. Further-
more, beginning the evolution with an arbitrary qubit
state any sequence of n projective measurements leads
to correlations that factor into pairs of dot products of
the consecutive input vectors [6]. Thus the temporal
correlations of n projective measurements on a qubit ad-
mit a classical simulation essentially using a sequence of
Toner-Bacon protocols.

A similar situation can arise in the case of multi-point
correlations. For example, consider a sequence of three
black boxes with two-setting inputs φ(tk) = {0, π/2}
for k = 1, 2, 3 and binary outputs α(tk) = ±1 to-
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gether with the promiss that the inputs fulfill the con-
straint

∑
k φ(tk) = {0, π}. Let us assume, that the

correlation function of outputs 〈α(t1)α(t2)α(t3)〉 equals
cos(φ(t1)+φ(t2)+φ(t3)). This is the correlation function
of a Greenberger-Horne-Zeilinger (GHZ) state, and in the
spatial scenario leads to the GHZ paradox [18]. In the
temporal scenario such a function can be obtained by a
sequence of two-outcome POVM measurements on a sin-
gle qubit [19]. However, as we prove later in the paper,
the entire setup can be simulated by a classical protocol
with exactly 1 bit of classical communication. Again, we
cannot verify that truly non-classical correlations have
appeared.
Definition of non-classical temporal correlations. The

above examples show that identifying a violation of tem-
poral Bell inequalities with so called ’entanglement in
time’ [6] is not always accurate. Indeed, forward sig-
nalling of classical information in the sequential scenario
leaves a kind of communication loophole: correlation
functions which would be considered non-classical in the
spatial setting can be simulated by classical protocols
that use a classical communication channel with capac-
ity given by the Holevo bound of the corresponding quan-
tum particle. The communication implicitly involved in
a sequential process motivates adapting the concept of
effective classical simulability with respect to the com-
munication cost (see Fig. 1):

Definition 1. The temporal correlation function
E(Y1, . . . , YN |X1, . . . , XN ) of the m level physical system
is non-classical if all classical algorithms that simulate
the function require more than log2m bits of classical
communication at some step of the simulation.

The idea of quantifying the degree of non-classicality
of a physical process distributed in space or time by
the amount of classical resources needed to simulate it
has already appeared in many contexts: communication
complexity of simulating spatial quantum correlations
[16, 20–27], memory complexity of simulating contextual
effects [28], and memory complexity of simulating uni-
tary evolution [13, 29–31]. The fact that simulation of
some sequential quantum procedures like contextuality
tests or unitary evolution demands resources exceeding
the Holevo bound has been already noticed in the litera-
ture [28, 30]. Our approach generalizes these ideas to the
scenario of sequential measurements performed by black
boxes, with no restriction on their internal operations
or memory. Definition 1 provides a theory-independent
characterisation of non-classical temporal correlations:
one does not need to specify the physical implementa-
tion which leads to given correlations, but only the num-
ber of degrees of freedom of the physical system entering
the boxes. In contrast, in the most similar scenario of
quantifying the memory cost of quantum contextuality
[28] the counted resource is the total number of internal
states used by the simulating machines; which can be
different from the size of the communication between the
steps needed for simulation. We point out that there are

other notions of simulability, which can be used to define
non-classicality (eg. in terms of computational complex-
ity [32]). In this work we solely refer to simulability in
the context of communication complexity .

We demonstrate the utility of our definition by present-
ing a sequence of quantum measurements that give non-
classical temporal correlations provided the number of
measurements is sufficiently large. The quantum system
and measurements we propose have the appealing prop-
erty that they are within the reach of current experimen-
tal techniques. In the simplest case, we find non-classical
temporal correlations for a sequence of 16 POVM mea-
surements on a qubit system.
Non-classicality of temporal GHZ correlations. We

show that the temporal GHZ correlations, that is tem-
poral correlations which have the same form as spatial
correlations of an n-qumit GHZ state:

|GHZ〉 =
1√
m

m∑
i=1

|i〉⊗n , (1)

are non-classical on condition that the number of mea-
surement steps and the number of settings per observer
is sufficiently large. To prove this fact we utilize the so
called modulo-(m, d) games [33]. In the spatial scenario,
these games are distributed computing tasks that can be
solved with certainty with the help of shared GHZ-state
(1) but not with classical randomized algorithms. We
translate these games into the sequential scenario and
prove that they can be always solved exactly by a se-
quence of POVM measurements on a single qumit giving
rise to temporal GHZ correlations. We show that for

FIG. 1. Temporal correlation functions. a) A sequence of n
consecutive measurements on a single quantum system with
settings provided by inputs Xk and outcomes given by num-
bers Yk. We say that temporal correlations are non-classical
if there is no classical simulation depicted in panel b). At the
i-th step of the simulation, the i-th black box can perform
local computations and send classical communication to the
next box. The correlation function obtained in the scenario a)
is non-classical if every classical simulation b) requires more
communication than the classical information capacity of the
quantum particle in at least one stage of the simulation.
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some sets of parameters n,m, d the correlations cannot
be simulated by any protocol whose communicates are
less than the number of classical bits given by the Holevo
bound.

Definition 2 (sequential n-point modulo-(m, d) prob-
lem). A sequential n-point modulo-(m, d) problem is a
communication complexity task, in which n separate or-
dered parties are given (log d)-bit inputs Xk, with the
promise that

∑n
k=1Xk mod d = 0. The task of the par-

ties is to output values Yk ∈ {0, 1, . . . ,m − 1} fulfilling
d
∑n
k=1 Yk ≡

∑n
k=1Xk mod(md) in a sequential proto-

col, which at k-th stage allows k-th party to produce her
local output Yk and communicate a ck-bit message Mk to
the (k + 1)-st party.

First we prove, that the above problem can be solved
with certainty by a sequence of appropriate generalized
quantum measurements on a single qumit. To solve the
modulo-(m, d) problem in a spatial domain [33], the n
parties share the state (1) and apply local unitary op-
erations F †m(Sdm)Xk to their particles, where [Fm]αβ =

1√
m

exp
(

2iαβπ
m

)
and [Sdm]αβ = exp

(
2iβπ
dm

)
δαβ , α, β =

0, 1, ...,m− 1. Finally the states are locally measured in
the standard basis. Let us now find a temporal counter-
part. First, note that the bond dimension of the matrix
product state representation [34] of the n-qumit GHZ
state is m, which implies that the state can be con-
structed by a sequential cascade of two qumit gates U
[35, 36]. This property implies that one can map ar-
bitrary local projective measurements in the spatial sce-
nario into a sequence of POVM measurements on a single
system with dimension m whilst keeping the correlation
function fixed [19]. Following the construction presented
in Ref. [19] one finds the measurement operators KYk

corresponding to different outcomes Yk by solving the
system of equations:

S(U(|ψ〉 ⊗ |0〉)) =

m−1∑
Yk=0

(KYk
|ψ〉)⊗ F †m(Sdm)Xj |Yk〉 ,

where S is a swap operator, and |ψ〉 is an arbitrary state.
For odd dimensions m, measurement operators KYk

ob-
tained in this way are diagonal matricesM with jth diag-
onal element equal to [M(d)]jj = 1√

m
exp

(
iXkπ(2j−2)

d

)
.

For even m, measurement operators corresponding to
outputs Yk are KYk

= AYk
M, where AYk

is a diag-
onal matrix with elements ±1 and ±i. In particular
for m = 2, A0 = diag(1, 1), A1 = diag(1,−1); for
m = 4, A0 = diag(1, 1, 1, 1), A1 = diag(1,−i,−1, i),
A2 = diag(1,−1, 1,−1), A3 = diag(1, i,−1,−i); for
m = 6, A0 = A2 = A4 = diag(1, 1, 1, 1, 1, 1), A1 = A3 =
A5 = diag(1,−1, 1,−1, 1,−1).

We now consider classical simulations of modulo-(m, d)
games that use at most logm bits of classical communi-
cation at each step. Before presenting the main result,
we first discuss the simplest case m = d = 2. It turns
out, that this problem can be simulated with a single

bit of communication at each stage (see Appendix A).
Since the modulo-(2, 2) problem for n = 3 is equivalent
to the scenario of the original GHZ paradox [37], dis-
cussed in the introduction, it follows that the two-setting
GHZ qubit correlations, which in the spatial domain re-
veal strong non-classicality, do not fulfill the definition of
non-classical temporal correlations.

We now provide a general lower bound on the amount
of communication which is needed to classically solve
these problems, which will imply the main result of our
work.

Theorem 1. Every classical protocol which solves the
sequential modulo-(m, d) problem with certainty uses at
least ck = log(d/m) bits of communication in all stages
of the protocol except at most md − 1 (not necessarily
consecutive) stages, when d is an integer power of 2 and
m is even.

The proof comes by a minor modification of the ar-
gument used in [30], adapted to the scenario of sequen-
tial measurements. We provide a stand-alone proof for
completeness, since the original proof applies an iterated
argument in a slightly informal way, leading to incorrect
constants in the analysis. To perform a proof by contra-
diction, fix any classical protocol which claims to solve
the modulo-(m, d) problem with certainty, while using
less than ck bits of communication in some n0 = md
stages. We will act as an adversary, constructing two
valid inputs of the modulo-(m, d) problem, Xk and X ′k
such that

∑n
k=1Xk 6≡

∑n
k=1X

′
k modmd. The inputs will

be defined so that the corresponding outputs Yk and Y ′k
will be indistinguishable, i.e., Yk = Y ′k, for all 1 ≤ k ≤ n.
Hence, the modulo-(m, d) problem will be solved incor-
rectly for at least one of the inputs Xk, X ′k, leading to a
contradiction.

The construction proceeds as follows. Let K0 =
{k1, k2, . . . , kn0} be the set of indices of the stages for
which the protocol sends messages of size less than ck.
We proceed with the construction of inputs Xk, X

′
k se-

quentially, so that the following predicates are fulfilled at
any step k:

• For all j ≤ k, Yj = Y ′j ,

• For all j ≤ k, Mj = M ′j , where Mj is the message.

The construction of inputs Xk, X
′
k proceeds as follows:

• For any stage k /∈ K0, k 6= n, we set Xk arbitrarily,
and put X ′k = Xk. Clearly, since Mk−1 = M ′k−1
by the inductive assumption and X ′k = Xk, the
protocol will act identically in the k-th step in both
cases, thus we have Mk = M ′k and Yk = Y ′k.

• For any stage k ∈ K0, given message Mk−1 =
M ′k−1 we consider the set of outcome pairs p(x) =
(Mk(x), Yk(x)) of the execution k-th step of the
protocol, taken over all possible inputs x ∈
{0, 1, . . . , d − 1}. Since |Mk| ≤ 2ck for k ∈ K0

and Yk ∈ {0, 1, . . . ,m − 1}, the set of possible



4

output pairs p(x) has less than 2ckm elements,
where we note that 2ckm = 2log(d/m)m = d. Con-
sequently, there exists a pair of values x < x′,
x, x′ ∈ {0, 1, . . . , d−1}, such that p(x) = p(x′). We
denote x′ = x+∆k, with ∆k ∈ {1, 2, . . . , d−1}. We
now put Xk = x, and choose X ′k ∈ {Xk, Xk + ∆k},
according to a rule which will be described later.
Regardless of this choice, we have Mk = M ′k and
Yk = Y ′k.

• Finally, in stage k = n, we set Xk so that the input
{Xk}nk=1 satisfies the modulo-d promise, and also
put X ′n = Xn.

It remains to show that it is possible to fix X ′k from
among each pair of considered values {x, x+ ∆} for k ∈
K0, so that

∑
k∈K0

Xk 6≡
∑
k∈K0

X ′k mod(md). This is
possible by the following lemma, whose proof is presented
in Appendix B.
Lemma 1. Let {∆k}k∈K0 be any sequence of integers,

with ∆k ∈ {1, 2, . . . ,md−1}, where m is even and d = 2s

for some integer s > 0. Then, there exists a subset of
indices K ′0 ⊆ K0 such that

∑
k∈K′

0
∆k ≡ 0 mod d and∑

k∈K′
0

∆k 6≡ 0 mod(md).
Using Lemma 1, we then pick X ′k = Xk + ∆k for all

steps k ∈ K ′0, and put X ′k = Xk for all steps k ∈ K0 \K ′0.
This completes our construction.

In the above proof, we restricted our considerations to
deterministic protocols. For randomized protocols, the
claim of the proposition also holds in the following sense:
any randomized protocol which does not satisfy the as-
sumptions of the proposition will lead to an incorrect
output for some instances of the modulo-md problem,
with strictly positive probability.

The above theorem can be treated as a temporal ver-
sion of Bell inequalities with auxiliary communication in
the spatial scenario [38, 39], and directly leads to the
main result of our work:

Proposition 1. The temporal GHZ correlations arising
from a sequential measurements on a single qumit, where
m is even, are non-classical for n ≥ 2m3.

Proof. It suffices to show that there exists a modulo-
(m, d) game for some d and n, for which classical sim-
ulation uses in at least one stage of the protocol more
than logm bits of communication. Using Theorem 1,
we need to choose parameters so that the following two
conditions are fulfilled:

• log(d/m) > logm, which means that the classical
communication needed is greater than the Holevo
bound for the system,

• n ≥ md, which guarantees that the amount of
communication equal to log(d/m) > logm bits is
needed in at least one stage.

Now, let d be the smallest integer power of 2 larger than
m2, we have d ≤ 2m2. Taking any n ≥ 2m3 ≥ md,

guarantees that the numbers m,n, d fulfill both of the
above conditions.

The above proposition shows that temporal GHZ cor-
relations of any qumit reveal temporal non-classicality,
if n is sufficiently large, which implies that any simulat-
ing protocol uses more bits of communication than the
Holevo bound in at least one stage of the protocol. As
a matter of fact, our theorem shows that this actually
happens in almost all stages of the protocol (for detailed
analysis see Appendix C).

We point out that the above proposition holds also
for a single qubit case and its possibility follows from
allowing POVM measurements. Therefore we provide a
first demonstration, that simulation of a temporal corre-
lation function on qubit demands resources that exceed
the Holevo bound (note that a similar effect for a unitary
evolution of a single qubit was shown before [30]).
Conclusions. In general terms, correlations between

physical systems can be considered in two distinct sce-
narios: spatial and temporal. In the spatial scenario lo-
cal measurements are performed by space-like separated
parties who may share a source of joint randomness but
who are unable to communicate. Temporal correlations,
on the other hand arise from a sequence of measurements
on a single physical system at different time instances.
Communication is now allowed from one time instance
to the next but is limited by the information capacity of
the system.

We showed that in the temporal measurement scenario
one can define a notion of non-classical n-point correla-
tions with a clear operational interpretation. Namely,
such correlations cannot be simulated by any classical
protocol whose communication is limited by the Holevo
capacity of the evolving quantum system. In addition,
we demonstrated that the temporal analogue of gener-
alised GHZ correlations arising from sequential measure-
ments on a single qumit, reveal non-classicality in the
temporal scenario provided the number of measurements
is large enough. Apart from these foundational issues,
we provided the first general lower bound on the commu-
nication complexity of simulating multi-point quantum
correlations in a sequential measurement scenario (see
Ref. [27] for results on the classical communication cost
of simulating spatial GHZ correlations).
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Appendix A: Communication complexity of
sequential modulo-(2,2) problem

Corollary 1. The sequential modulo-(2, 2) problem can
be solved with certainty with one bit of (classical) com-
munication at each stage of the protocol (that is ck = 1
for all k = 1, . . . , N − 1).

Proof. Recall that in the sequential modulo-(2, 2) prob-
lem, the parties are given bit inputs Xk ∈ {0, 1} with
the promise

∑
iXi ≡ 0 mod 2 and output Yk ∈ {0, 1} so

that the outputs fulfill
∑
i 2Yi −

∑
iXi ≡ 0 mod 4. Let

us consider the following deterministic protocol:

• The message is initialised to M0 = 0,

• if Xi = Mi−1 = 1, then the i-th party returns Yi =
1, and otherwise it returns Yi = 0,

• the i-th party sends Mi = (Xi + Mi−1) mod 2 to
the (i+ 1)-st party.

The protocol works due to the property:
∑
i≤j Xi =

Mj +
∑
i≤j 2Yi, which can be shown by induction on

j. Since Mj ≡
∑
i≤j Xi mod 2, by the promise on the

input for j = N we have MN = 0. Hence,
∑
i≤N Xi =∑

i≤N 2Yi, and the claim follows.

The protocol is valid because the expectation value of∑n
k=1 Yk for settings that satisfy the promise (assum-

ing Xk corresponds to x̂ and ŷ directions on the Bloch
sphere) is either equal to 0 (for even number of pairs of
settings equal to 1) or 1 (for odd number of the pairs).
It is therefore sufficient to keep track of the parity of
the number of settings equal to 1. This is exactly acom-
plished by the protocol. Note that the "local" (single-
point) expectation values are not modelled by this pro-
tocol.

Appendix B: Proof of Lemma 1

W.l.o.g. let K = {1, . . . , n} within the proof of this
claim. Define Si be the set of all modulo-md remainders
which can be obtained using subset sums of the first i
elements,

Si = {

∑
j∈I

∆j

mod(md) : I ⊆ {1, . . . , i}} .

Consider the sequence of sets, S1, S2, . . . Sn. Since Si ⊆
Si+1 ⊆ 1, . . . ,md− 1 for i = 1 . . . n and n ≥ md, we must
have that Sa = Sa+1 for some a. The element ∆a+1 ∈ Sa
and the set Sa is invariant with respect to a modulo-md
shift by ∆a+1,

Sa = ∆a+1 + Sa modmd . (B1)

Let p be the unique odd integer such that ∆a+1 = p · 2r,
for some integer r ≥ 0. Equation (B1) implies that all
multiples of ∆a+1 are also in Sa(modmd) and in partic-
ular, 2s−r∆a+1 = pdmodmd ∈ Sa. Since p is odd and m
even, 2s−r∆a+1 6= 0 modmd and 2s−r∆a+1 = 0 mod d,
as required.

Appendix C: Communication complexity properties
of sequential protocols simulating GHZ correlations

Corollary 2. Any classical protocol simulating temporal
GHZ correlations of a single qumit on n parties must:

1. Send Ω(ε log n) bits of communication to the next
party for each of at least n−O(nε) parties, for any
ε > 0.

2. Contain a sequence of Ω(n1−ε) consecutive parties,
each of which needs to send Ω(ε log n) bits of com-
munication to the next party, for any ε > 0.

Proof. It suffices to take d = Θ(nε) in Theorem 1.

Note that in order to obtain a violation of the Holevo
bound for almost all parties, we need to choose an appro-
priate value of n = mΩ(1/ε), so that the required amount
of communication of Ω(ε log n), which follows from the
above proposition, exceeds logm.
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